Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Hassan Martinez, ${ }^{\text {a }}$ Horst

Puschmann, ${ }^{\text {b }}$ Judith A. K. Howard, ${ }^{\text {b }}$ Jorge Acevedo ${ }^{\text {a }}$ and Oscar Au-Alvarez ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Natural Sciences, University of Oriente, Santiago de Cuba 90500, Cuba, and ${ }^{\text {b }}$ Department of Chemistry, University of Durham, Durham DH1 3LE, UK

Correspondence e-mail:
o.au-alvarez@cnt.uo.edu.cu

Key indicators

Single-crystal X-ray study
$T=393 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.047$
$w R$ factor $=0.119$
Data-to-parameter ratio $=15.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-[4-(Dimethylamino)phenyl]-4,5-diphenyl1 H -imidazole isopropanol solvate

The title compound, $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \cdot \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$, crystallizes with two independent molecules and two solvent molecules in the asymmetric unit. These are connected through hydrogen bonds between the NH group of the imidazole ring and the O atom of the isopropanol solvent molecule, as well as between the N atom of the imidazole ring and the OH group of the isopropanol solvent molecule.

Comment

Microwave-assisted organic synthesis (MAOS) has been used extensively since the mid-1990s due to the availability of commercial microwave equipment and the continuing development of solvent-free reaction techniques. Different types of organic compounds have been synthesized using MAOS (Lidström et al., 2001). Usyatinsky \& Khmelnitsky (2000) have reported the use of this technique in the preparation of $2,4,5-$ substituted imidazoles. Their synthetic procedure involved the condensation of 1,2-diaryethandienones with aldehydes and ammonium acetate as the source of ammonia with an acidic support (acidic silica) in a microwave oven. We attempted to synthesize $\quad 2$-[4-(dimethylamino)phenyl]-4,5-diphenyl- 1 H imidazole using a similar technique in the absence of the acidic support media. Recrystallization of the reaction product from isopropanol afforded compound (I), as shown by single-crystal X-ray structure determination.

(I)

Compound (I) crystallizes with two independent molecules, A and B (Fig. 1), as well as two solvent molecules, in the asymmetric unit. The general conformation of the two molecules is similar, as shown by the dihedral angles between the imidazole ring (C 1 to N 2 and C 26 to N 4 , ring 1) and the three benzene rings ($\mathrm{C} 4-\mathrm{C} 9$ and $\mathrm{C} 27-\mathrm{C} 32$, ring 2; $\mathrm{C} 12-\mathrm{C} 17$ and C35-C40, ring 3; C18-C23 and C41-C46, ring 4). In molecule $A, 1 / 2=7.42^{\circ}, 1 / 3=36.71^{\circ}$ and $1 / 4=45.49^{\circ}$; in molecule $B, 1 / 2$ $=8.79^{\circ}, 1 / 3=40.34^{\circ}$ and $1 / 4=43.84^{\circ}$.

A comparison of the bond distances of the imidazole ring of (I) (Table 1) and the mean values of the distances found in similar structures reported in the Cambridge Structural Database (Version 5.25 of October 2003; Allen, 2002) shows that the bond distance $\mathrm{N} 1-\mathrm{C} 2(\mathrm{~N} 5-\mathrm{C} 25$ for molecule $B)$ is $0.010 \AA$ smaller, the rest of the bond distances being practically the same.

In the crystal structure, the molecules are connected through hydrogen bonds (Table 2) between the NH group of

Received 8 June 2004 Accepted 15 June 2004 Online 26 June 2004

Figure 1
The molecular structure of (I), showing the atom labelling and 50\% probability ellipsoids. H atoms have been omitted for clarity, except for the H atom of the NH group and the solvent OH group. Molecule A is on the left and molecule B is on the right.
the imidazole ring and the O atom of the isopropanol solvent molecule and between the N atom of the imidazole ring and the OH group of the isopropanol solvent molecule. There are short contacts between $\mathrm{C} 9-\mathrm{H} 9$ and O 2 and between $\mathrm{C} 28-$ H 28 and $\mathrm{O} 1(x-1, y+1, z)$.

Experimental

A mixture of $0.525 \mathrm{~g}(2.5 \mathrm{mmol})$ of benzil, $0.372 \mathrm{~g}(2.5 \mathrm{mmol})$ of dimethylaminobenzaldehyde and 7 g of ammonium acetate was irradiated with a microwave power of 262 W for 10 min . The reaction product was treated with 20 ml of diethyl ether and filtered. The solid residue was crystallized from isopropanol (m.p. 530-531 K).

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \cdot \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	$Z=4$
$M_{r}=399.52$	
Triclinic, $P \overline{1}$	$D_{x}=1.202 \mathrm{Mg} \mathrm{m}^{-3}$
$a=8.764(12) \AA$	Mo $\mathrm{K} \alpha$ radiation
$b=12.087(14) \AA$	Cell parameters from 1567
$c=21.07(4) \AA$	reflections
$\alpha=97.48(9)^{\circ}$	$\theta=2.6-25.4^{\circ}$
$\beta=93.12(10)^{\circ}$	$\mu=0.07 \mathrm{~mm}^{-1}$
$\gamma=91.89(10)^{\circ}$	$T=393(2) \mathrm{K}$
$V=2208(6) \AA^{\circ}$	Plate, colourless
Data collection	$0.45 \times 0.24 \times 0.02 \mathrm{~mm}$
Bruker SMART CCD 1 K area-	
detector diffractometer	5245 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.057$
Absorption correction: none	$\theta_{\text {max }}=26.0^{\circ}$
15473 measured reflections	$h=-8 \rightarrow 10$
8644 independent reflections	$k=-14 \rightarrow 14$
	$l=-25 \rightarrow 25$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.119$
$S=0.85$
8644 reflections
565 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0679 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.23$ e \AA^{-3}
$\Delta \rho_{\min }=-0.25 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 3$	$1.362(3)$	$\mathrm{N} 4-\mathrm{C} 26$	$1.379(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.370(3)$	$\mathrm{N} 5-\mathrm{C} 24$	$1.361(3)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.326(3)$	$\mathrm{N} 5-\mathrm{C} 25$	$1.369(3)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.379(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.384(3)$
$\mathrm{N} 4-\mathrm{C} 24$	$1.333(3)$	$\mathrm{C} 25-\mathrm{C} 26$	$1.381(3)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	$108.75(19)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$104.56(19)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1$	$105.67(18)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 1$	$110.58(19)$
$\mathrm{C} 24-\mathrm{N} 4-\mathrm{C} 26$	$104.97(18)$	$\mathrm{N} 4-\mathrm{C} 24-\mathrm{N} 5$	$111.13(19)$
$\mathrm{C} 24-\mathrm{N} 5-\mathrm{C} 25$	$108.19(19)$	$\mathrm{N} 5-\mathrm{C} 25-\mathrm{C} 26$	$105.01(19)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	$110.44(18)$	$\mathrm{N} 4-\mathrm{C} 26-\mathrm{C} 25$	$110.69(17)$

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	$0.85(2)$	$1.95(2)$	$2.797(4)$	$173(2)$
$\mathrm{N} 5-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.92(2)$	$1.92(2)$	$2.840(4)$	$173(2)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{H} 3 \cdots \mathrm{~N} \mathrm{i}^{2}$	$0.84(3)$	$1.97(3)$	$2.814(4)$	$174(2)$
$\mathrm{O} 2-\mathrm{H} 4 \cdots \mathrm{~N} 4$	$0.95(3)$	$1.86(3)$	$2.814(4)$	$176(2)$
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O} 2$	0.93	2.47	$3.329(7)$	155
${\mathrm{C} 28-\mathrm{H} 28 \cdots \mathrm{O}^{\mathrm{i}}}^{\mathrm{i}}$	0.93	2.44	$3.294(7)$	153

Symmetry codes: (i) $x-1,1+y, z$; (ii) $1+x, y, z$.

All H atoms were placed in ideal positions and refined as riding $[\mathrm{C}-\mathrm{H}=0.93 \AA$ or $0.96 \AA$ (methyl H atoms); $U(\mathrm{H})=1.2$ or 1.5 (methyl H atoms) times $U_{\text {eq }}$ (parent atrom)], except for the H atoms linked to the N and O atoms, which were located in difference Fourier maps and refined freely.

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1998); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (1998). SMART-NT and SAINT-NT. Versions 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Lidström, P., Tierney, J., Wathey, B. \& Westman, J. (2001). Tetrahedron, 57, 9225-9283.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Usyatinsky, A. Ya. \& Khmelnitsky, Y. (2000). Tetrahedron Lett. 41, 50315034.

[^0]: (C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

